
CSCI 210: Computer Organization
Lecture 2: Assembly Language

Stephen Checkoway

Oberlin College

Slides from Cynthia Taylor

Announcements

• Reading due before class, linked from blackboard

• Problem set 0 due next Friday at 23:59

– On GradeScope, linked from blackboard

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)

1000110001100010000000000000000
1000110011110010000000000000100
1010110011110010000000000000000
1010110001100010000000000000100

1

2

3

Selection High Level
Language

Assembly Machine Language

A 3 2 1

B 3 1 2

C 2 1 2

D 1 2 2

E None of the above

How to Speak Computer?

What Your CPU Understands

Electricity

Ones and zeros

Problem: People don’t
like writing programs in
ones and zeros

How to Speak Computer
High Level Language

Program

Assembly Language
Program

Compiler

Machine Interpretation

Machine Language
Program

Assembler

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

How to Speak Computer
High Level Language

Program

Assembly Language
Program

Compiler
lw $15, 0($2)

lw $16, 4($2)

sw $16, 0($2)

sw $15, 4($2)

Machine Interpretation

Machine Language
Program

Assembler

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

How to Speak Computer
High Level Language

Program

Assembly Language
Program

Compiler
lw $15, 0($2)

lw $16, 4($2)

sw $16, 0($2)

sw $15, 4($2)

Machine Interpretation

Machine Language
Program

Assembler

1000110001100010000000000000000
1000110011110010000000000000100
1010110011110010000000000000000
1010110001100010000000000000100

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

How to Speak Computer
High Level Language

Program

Assembly Language
Program

Compiler
lw $15, 0($2)

lw $16, 4($2)

sw $16, 0($2)

sw $15, 4($2)

Machine Interpretation

Machine Language
Program

Assembler

1000110001100010000000000000000
1000110011110010000000000000100
1010110011110010000000000000000
1010110001100010000000000000100

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

Machine does something!

How to Speak Computer
High Level Language

Program

Assembly Language
Program

Compiler
lw $15, 0($2)

lw $16, 4($2)

sw $16, 0($2)

sw $15, 4($2)

Machine Interpretation

Machine Language
Program

Assembler

1000110001100010000000000000000
1000110011110010000000000000100
1010110011110010000000000000000
1010110001100010000000000000100

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

Machine does something!

Let’s look at these in reverse order

• Starting with “machine does something”

• Build up to high-level languages

• At each step, we’re building abstractions that the next higher-
level can use

• WARNING: Everything I’m about to say is mostly correct but
definitely not complete!

Machine does something

• At the lowest level (that we’ll talk about) we have transistors
which act (sort of) like electrical switches

• These transistors are organized into groups and connected
together to perform operations like “add numbers—which are
represented by a sequence of electrical voltages—together”

• A modern processor—a CPU—is built from billions of
transistors

Central Processing Unit (CPU)

• The CPU operates by processing a stream of machine-
language instructions which, exactly like numbers, are
represented by a sequence of electrical voltages

• The instructions dictate which operation (like addition or
multiplication) to perform and what data to perform it on

• The CPU contains a very small amount of memory called
registers (built out of transistors!) to store the data it
operates on
– How small? It holds about 30 numbers.

Correspondence between instructions/numbers and
sequences of voltages

• The CPU works with voltages but
humans work with numbers and
instructions

• We represent
numbers/instructions as
sequences of 0s and 1s

• These correspond to voltages:

– 0 corresponds to a voltage < .5 V

– 1 corresponds to a voltage > .5 V

Registers

• (Very) Small amount of memory inside the CPU

• Data is put into a register before it is used by an instruction

• Manipulated data is then stored back in main memory (RAM).

Aside: Multi-core CPUs

• Modern CPUs contains one or more “cores,” each of which
executes instructions independently from the other cores
(we’re going to only focus on single-core CPUs but the same
ideas apply to multi-core CPUs)

Machine Language

• Abstracts from voltage levels to 0s and 1s

• A machine language program tells the CPU what to do

• It consists of a sequence of individual instructions

• Each instruction is a sequence of 0s and 1s

– In this class, each instruction is a sequence of 32 0s and 1s

Machine Language
Program

1000110001100010000000000000000
1000110011110010000000000000100
1010110011110010000000000000000
1010110001100010000000000000100

Typical Machine Language Operations
(with corresponding machine language instruction)
• Load data from main memory (RAM) into a register

– 1000 1110 0000 1000 0000 0000 0000 0000

• Store the contents of a register into main memory
– 1010 1110 0100 1010 0000 0000 0000 0000

• Compute the sum (or difference) of two registers, store the result in a
register
– 0000 0001 0010 1010 0100 0000 0010 0000

• Change which instruction runs next
– 0000 1000 0001 0000 0000 0000 0000 0111

• Change which instruction runs next based on a register value
– 0001 0001 0000 1001 1111 1111 1111 1111

Machine-language is the lowest level abstraction
programmer can use to program a particular

machine
• We used to toggle

physical switches
to load machine-
language into the
computer

• This is painful!

Instruction Set Architecture (ISA)

• The definition (specification) of a machine language supported
by a CPU

• Encompasses all the information necessary to write a machine
language program, including instructions, registers, memory
access, …

• Usually defines a human-readable assembly language which
has a 1-1 correspondence with machine-language

– No more writing code in 0s and 1s!

Examples of ISAs

• Intel x86, x86_64

• MIPS32, MIPS64

• ARM: A32 (32-bit ARM), A64 (64-bit ARM), T32 (Thumb), Apple
Silicon

• Power ISA (PowerPC)

• Risc-V

Which of the following statement is generally true about ISAs?

Select Statement

A Some models of processors support exactly one ISA,
others support multiple (usually related) ISAs

B An ISA is unique to one model of processor.

C Every processor supports multiple ISAs.

D Each processor manufacturer has its own unique ISA.

E None of the above

22

How to Speak Computer
High Level Language

Program

Assembly Language
Program

Compiler
lw $15, 0($2)

lw $16, 4($2)

sw $16, 0($2)

sw $15, 4($2)

Machine Interpretation

Machine Language
Program

Assembler

1000110001100010000000000000000
1000110011110010000000000000100
1010110011110010000000000000000
1010110001100010000000000000100

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

Machine does something!

Assembly Language

• Abstraction of machine language
– From 1s & 0s to symbolic names

• Allows direct access to architectural features (registers, memory)

• Symbolic names are used for
– operations (mnemonics)

– memory locations (variables, branch labels)

• There’s usually a single assembly language corresponding to a
machine language
– x86 has at least 2 distinct assembly languages (Intel and AT&T) with

multiple variants of each; x86 is weird in a bunch of respects

Assembler

• A program called an assembler converts assembly-language
programs to their equivalent machine-language programs

• The input is a text file containing an assembly program

• The output is a binary file containing a machine language
program

Aside

• Sometimes CPUs support undocumented or even unintended
instructions

• These instructions often don’t have an official symbolic name
and so have to be written in machine language

• Such instructions were common in old CPUs which didn’t check
for illegal instructions

• Modern CPUs will (usually) detect an illegal instruction and
prevent the program from continuing

26

How to Speak Computer
High Level Language

Program

Assembly Language
Program

Compiler
lw $15, 0($2)

lw $16, 4($2)

sw $16, 0($2)

sw $15, 4($2)

Machine Interpretation

Machine Language
Program

Assembler

1000110001100010000000000000000
1000110011110010000000000000100
1010110011110010000000000000000
1010110001100010000000000000100

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

Machine does something!

x = 4;

y = 5;

x = x + y;

addi $t0, $zero, 4 #set $t0 to 4

addi $t1, $zero, 5 #set $t1 to 5

add $t0, $t0, $t1 #perform the add

High-level code

MIPS code

Usually, 1 line of high-level code is translated to multiple
assembly instructions; these are very simple

Compiler

• A program called a compiler translates high-level code like C or
Rust into assembly language

• The input is a text file containing a high-level program

• The output is a text file containing an assembly program

• Some compilers (like clang or rustc) incorporate an assembler
and go directly from high-level programs to machine language
programs; others (like gcc) run the assembler as a separate
program

Abstractions recap

• Transistors operating via electricity

• Abstraction: machine-language specifying operations in 0s and 1s

• Abstraction: assembly-language specifying operations in human-
readable text

• Abstraction: high-level language specifying algorithms

Group Discussion: What are some advantages to a
high-level language over programming in assembly?

CS History: Rear Admiral Grace
Hopper

• Invented the compiler

• Conceptualized machine-
independent programming
languages.

• Popularized term “debugging”

Not actually the first use of “bug” but a good story
nevertheless

https://daily.jstor.org/the-bug-in-the-computer-bug-story/

A single program written in a high-level language
can be compiled into ______ assembly language

programs

A. Exactly one

B. Multiple

C. At most three

A single program written in assembly can be
assembled into ______ machine language programs

A. Exactly one

B. Multiple

C. At most two

High-level language program (in C)
 void swap (int v[], int k) {
 int temp;
 temp = v[k];
 v[k] = v[k+1];
 v[k+1] = temp;
 }

Assembly language program (for MIPS)
 swap: sll $2, $5, 2

 add $2, $4, $2
 lw $15, 0($2)
 lw $16, 4($2)
 sw $16, 0($2)
 sw $15, 4($2)
 jr $31

Machine (object, binary) code (for MIPS)
 000000 00000 00101 0001000010000000

 000000 00100 00010 0001000000100000

. . .

C compiler

assembler

one-to-many

one-to-one

Reading

• Next lecture: Hardware!

– Sections 1.4 and 1.5

• Problem set 0 due next Friday at 11:59 p.m.

36

	Slide 1: CSCI 210: Computer Organization Lecture 2: Assembly Language
	Slide 2: Announcements
	Slide 3
	Slide 4: What Your CPU Understands
	Slide 5: How to Speak Computer
	Slide 6: How to Speak Computer
	Slide 7: How to Speak Computer
	Slide 8: How to Speak Computer
	Slide 9: How to Speak Computer
	Slide 10: Let’s look at these in reverse order
	Slide 11: Machine does something
	Slide 12: Central Processing Unit (CPU)
	Slide 13: Correspondence between instructions/numbers and sequences of voltages
	Slide 14: Registers
	Slide 15: Aside: Multi-core CPUs
	Slide 16: Machine Language
	Slide 17: Typical Machine Language Operations (with corresponding machine language instruction)
	Slide 18: Machine-language is the lowest level abstraction programmer can use to program a particular machine
	Slide 19: Instruction Set Architecture (ISA)
	Slide 20: Examples of ISAs
	Slide 21: Which of the following statement is generally true about ISAs?
	Slide 22: How to Speak Computer
	Slide 23: Assembly Language
	Slide 24: Assembler
	Slide 25: Aside
	Slide 26: How to Speak Computer
	Slide 27
	Slide 28: Compiler
	Slide 29: Abstractions recap
	Slide 30: Group Discussion: What are some advantages to a high-level language over programming in assembly?
	Slide 31: CS History: Rear Admiral Grace Hopper
	Slide 32: Not actually the first use of “bug” but a good story nevertheless
	Slide 33: A single program written in a high-level language can be compiled into ______ assembly language programs
	Slide 34: A single program written in assembly can be assembled into ______ machine language programs
	Slide 35
	Slide 36: Reading

