CSCI 210: Computer Organization
Lecture 2: Assembly Language

Stephen Checkoway
Oberlin College
Slides from Cynthia Taylor

Announcements

* Reading due before class, linked from blackboard

* Problem set O due next Friday at 23:59
— On GradeScope, linked from blackboard

How to Speak Computer?

1000110001100010000000000000000
1000110011110010000000000000100
1010110011110010000000000000000
1010110001100010000000000000100

lw $15, 0($2) X

lw $16, 4(S2) temp = vIK[:

sw $16, 0(S2) VIK] = V[k+ 1’]_

sw 515, 4(52) vik+1] = temp;

1 3
ol e e
Language
A 3 2 1
1 2
1 2

2

None of the above

What Your CPU Understands

Electricity

Ones and zeros

Problem: People don’t
like writing programs in
ones and zeros

How to Speak Computer

High Level Language temp = v[K];
Program V[K] = v[k+1];

v[k+1] = temp;
Compiler

Assembly Language
Program

Assembler

Machine Language
Program

Machine Interpretation

How to Speak Computer

High Level Language temp = v[K];
Program V[K] = v[k+1];

v[k+1] = temp;
Compiler

lw $15, 0($2)

Assembly Language lw $16, 4($2)
Program sw$16, 0($2)

sw$15, 4($2)
Assembler

Machine Language
Program

Machine Interpretation

How to Speak Computer

High Level Language temp = v[K];
Program V[K] = v[k+1];
v[k+1] = temp;
Compiler
lw $15, 0($2)
Assembly Language lw $16, 4($2)
Program sw$16, 0($2)
sw$15, 4($2)
Assembler

1000110001100010000000000000000

Machine Language 1000110011110010000000000000100
Program 1010110011110010000000000000000

I 1010110001100010000000000000100

Machine Interpretation

How to Speak Computer

High Level Language temp = v[K];
Program V[K] = v[k+1];

v[k+1] = temp;

Compiler
Iw $15, 0($2)

Assembly Language lw $16, 4($2)
Program sw$16, 0($2)

sw$15, 4($2)
Assembler
1000110001100010000000000000000
Machine Language 1000110011110010000000000000100
Program 1010110011110010000000000000000

' 1010110001100010000000000000100

Machine Interpretation

Machine does something!

How to Speak Computer

High Level Language temp = v[K];
Program V[K] = v[k+1];
v[k+1] = temp;
Compiler
lw $15, 0($2)
Assembly Language lw $16, 4($2)
Program sw$16, 0($2)
sw$15, 4($2)
Assembler

1000110001100010000000000000000

Machine Language 1000110011110010000000000000100
Program 1010110011110010000000000000000

I 1010110001100010000000000000100

Machine Interpretation

Machine does something!

Let’s look at these in reverse order

Starting with “machine does something”
Build up to high-level languages

At each step, we’re building abstractions that the next higher-
level can use

WARNING: Everything I’'m about to say is mostly correct but
definitely not complete!

Machine does something

e At the lowest level (that we’ll talk about) we have transistors
which act (sort of) like electrical switches

* These transistors are organized into groups and connected
together to perform operations like “add numbers—which are
represented by a sequence of electrical voltages—together”

* A modern processor—a CPU—is built from billions of
transistors

Central Processing Unit (CPU)

 The CPU operates by processing a stream of machine-
language instructions which, exactly like numbers, are
represented by a sequence of electrical voltages

* The instructions dictate which operation (like addition or
multiplication) to perform and what data to perform it on

* The CPU contains a very small amount of memory called

registers (built out of transistors!) to store the data it
operates on

— How small? It holds about 30 numbers.

Correspondence between instructions/numbers and
sequences of voltages

 The CPU works with voltages but

humans work with numbers and
Instructions

* We represent
numbers/instructions as
sequences of Os and 1s

* These correspond to voltages:
— 0 corresponds to a voltage< .5V

— 1 corresponds to a voltage > .5V

Registers

* (Very) Small amount of memory inside the CPU
e Datais put into a register before it is used by an instruction

* Manipulated data is then stored back in main memory (RAM).

Aside: Multi-core CPUs

* Modern CPUs contains one or more “cores,” each of which
executes instructions independently from the other cores
(we’re going to only focus on single-core CPUs but the same
ideas apply to multi-core CPUs)

Machine Language

1000110001100010000000000000000

Machine Language
Program

1000110011110010000000000000100
1010110011110010000000000000000

Abstracts from vo
A machine langua

1010110001100010000000000000100

ltage levels to Os and 1s

ge program tells the CPU what to do

It consists of a sequence of individual instructions

Each instruction is a sequence of Os and 1s

— In this class, each

instruction is a sequence of 32 0s and 1s

Typical Machine Language Operations
(with corresponding machine language instruction)

Load data from main memory (RAM) into a register
— 1000 1110 0000 1000 OO0O0 OO0OO0O 0000 0000

Store the contents of a register into main memory
— 10101110 0100 1010 O0O00 OO0OO 0000 0000

Compute the sum (or difference) of two registers, store the result in a
register

— 0000 0001 0010 10100100 0000 0010 0000
Change which instruction runs next
— 0000 1000 0001 0000 0000 0000 000001112

Change which instruction runs next based on a register value
— 0001 0001 0000100111171 127771 17171711112

Machine-language is the lowest level abstraction
programmer can use to program a particular
machine

 We used to toggle
physical switches
to load machine-
language into the
computer

* This is painful!

Instruction Set Architecture (ISA)

* The definition (specification) of a machine language supported
by a CPU

* Encompasses all the information necessary to write a machine

language program, including instructions, registers, memory
access, ...

* Usually defines a human-readable assembly language which
has a 1-1 correspondence with machine-language

— No more writing code in Os and 1s!

Examples of ISAs

Intel x86, x86 64
MIPS32, MIPS64

ARM: A32 (32-bit ARM), A64 (64-bit ARM), T32 (Thumb), Apple
Silicon

Power ISA (PowerPC)

Risc-V

Which of the following statement is generally true about ISAs?

Some models of processors support exactly one ISA,
others support multiple (usually related) ISAs

An ISA is unique to one model of processor.

Every processor supports multiple ISAs.

Each processor manufacturer has its own unique ISA.

None of the above

How to Speak Computer

High Level Language temp = v[K];
Program V[K] = v[k+1];
v[k+1] = temp;
Compiler
lw $15, 0($2)
Assembly Language lw $16, 4($2)
Program sw$16, 0($2)
sw$15, 4($2)
Assembler

1000110001100010000000000000000
1000110011110010000000000000100
1010110011110010000000000000000

Machine Language
Program

I 1010110001100010000000000000100

Machine Interpretation

Machine does something!

Assembly Language

Abstraction of machine language
— From 1s & Os to symbolic names

Allows direct access to architectural features (registers, memory)

Symbolic names are used for

— operations (mnemonics)

— memory locations (variables, branch labels)

There’s usually a single assembly language corresponding to a
machine language

— x86 has at least 2 distinct assembly languages (Intel and AT&T) with
multiple variants of each; x86 is weird in a bunch of respects

Assembler

* A program called an assembler converts assembly-language
programs to their equivalent machine-language programs

 The input is a text file containing an assembly program

 The output is a binary file containing a machine language
program

Aside

Sometimes CPUs support undocumented or even unintended
instructions

These instructions often don’t have an official symbolic name
and so have to be written in machine language

Such instructions were common in old CPUs which didn’t check
for illegal instructions

Modern CPUs will (usually) detect an illegal instruction and
prevent the program from continuing

How to Speak Computer

High Level Language temp = v[k];
Program VIK] = v[k+1];
v[k+1] = temp;
Compiler
Iw $15, 0($2)
lw $16, 4($2)

Assembly Language
Program sw$16, 0($2)

sw$15, 4($2)
Assembler
1000110001100010000000000000000
Machine Language 1000110011110010000000000000100
Program 1010110011110010000000000000000

I 1010110001100010000000000000100

Machine Interpretation

Machine does something!

High-level code x = 4;
y = 97
X = X t+ vy

MIPS code addi St0, Szero, 4 #set St0 to 4
addi Stl, Szero, 5 #set $Stl to 5
add $t0, $t0, S$tl #perform the add

Usually, 1 line of high-level code is translated to multiple
assembly instructions; these are very simple

Compiler

* A program called a compiler translates high-level code like C or
Rust into assembly language

 The input is a text file containing a high-level program
* The output is a text file containing an assembly program

 Some compilers (like clang or rustc) incorporate an assembler
and go directly from high-level programs to machine language
programs; others (like gcc) run the assembler as a separate
program

Abstractions recap

Transistors operating via electricity
Abstraction: machine-language specifying operations in Os and 1s

Abstraction: assembly-language specifying operations in human-
readable text

Abstraction: high-level language specifying algorithms

Group Discussion: What are some advantages to a
high-level language over programming in assembly?

CS History: Rear Admiral Grace
Hopper

* Invented the compiler

* Conceptualized machine-
independent programming
languages.

* Popularized term “debugging”

Not actually the first use of “bug” but a good story
nevertheless

94
D &t On Aann ‘:{‘w\h} i/.z/a 7.037 gyy 0L5
/000 . 1,\.,W vanjﬁ/" v 3 9.087 §YC 795 covu)
13w, (032 MP -me t":ﬁlwwfrfé-ﬂ 76/5725055(-
033) Pko » = lzoyv(tw.\.
T 2.13067¢%
}Zuos]_a G- =~ 033 —/aJ:J ;,r,g«j ?JJJ /&J
{m ‘-uﬁo&\ . v, uow 4—‘1/}'
QQ’L@\?\ Q)‘-"‘\ﬂ}‘
1700 OlarTed Clg: sin e lapc. (Sﬂw. .;.chl)
\Say 3 J.#L.‘-i \lzekw\ 70 ?»U\ (E

;._ Mo Th) in Celay

W P Y
- v, j}

}'\ 0ty <t a\ case B N ouwn
Ig/u)') A :;\' }A (:}‘J g ‘1 u1 L ‘ " { B L

Jyo '°“7‘~ LM g

https://daily.jstor.org/the-bug-in-the-computer-bug-story/

A single program written in a high-level language
can be compiled into assembly language
programs

A. Exactly one

B. Multiple

C. At most three

A single program written in assembly can be
assembled into machine language programs

A. Exactly one

B. Multiple

C. At most two

High-level language program (in C)

void swap (int v[], int k) {
int temp;

\t;e[r]?]) i z%ili], C compiler one-to-many
v[ik+1l] = temp;

}
Assembly language program (for MIPS)

swap: sl11S2, $5, 2
add$2, $4, $2

1w $15, 0($2)

lw $16, 4(82) assembler one-to-one
sw $16, 0(52)

sw $15, 4($2)

jr $31

Machine (object, binary) code (for MIPS)

000000 00000 00101 0001000010000000
000000 00100 00010 0001000000100000

Reading

e Next lecture: Hardware!
— Sections 1.4 and 1.5

* Problem set O due next Friday at 11:59 p.m.

	Slide 1: CSCI 210: Computer Organization Lecture 2: Assembly Language
	Slide 2: Announcements
	Slide 3
	Slide 4: What Your CPU Understands
	Slide 5: How to Speak Computer
	Slide 6: How to Speak Computer
	Slide 7: How to Speak Computer
	Slide 8: How to Speak Computer
	Slide 9: How to Speak Computer
	Slide 10: Let’s look at these in reverse order
	Slide 11: Machine does something
	Slide 12: Central Processing Unit (CPU)
	Slide 13: Correspondence between instructions/numbers and sequences of voltages
	Slide 14: Registers
	Slide 15: Aside: Multi-core CPUs
	Slide 16: Machine Language
	Slide 17: Typical Machine Language Operations (with corresponding machine language instruction)
	Slide 18: Machine-language is the lowest level abstraction programmer can use to program a particular machine
	Slide 19: Instruction Set Architecture (ISA)
	Slide 20: Examples of ISAs
	Slide 21: Which of the following statement is generally true about ISAs?
	Slide 22: How to Speak Computer
	Slide 23: Assembly Language
	Slide 24: Assembler
	Slide 25: Aside
	Slide 26: How to Speak Computer
	Slide 27
	Slide 28: Compiler
	Slide 29: Abstractions recap
	Slide 30: Group Discussion: What are some advantages to a high-level language over programming in assembly?
	Slide 31: CS History: Rear Admiral Grace Hopper
	Slide 32: Not actually the first use of “bug” but a good story nevertheless
	Slide 33: A single program written in a high-level language can be compiled into ______ assembly language programs
	Slide 34: A single program written in assembly can be assembled into ______ machine language programs
	Slide 35
	Slide 36: Reading

